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1. Introduction 

Data transfer from detectors and their front-end systems into FPGAs and GPUs for online 

processing is crucial as well as demanding due to the required high data bandwidth and/or 

low latency. Data is transferred between detector, server, GPU/CPU memory in various 

ways. Modern technologies like 10/40 GBps Ethernet as well as PCIe along with DMA and 

zero copy are important aspects of the possible solutions. Given the major effort 

implementing different computer algorithms for this ever increasing complex hardware, a 

joint development is important. The goal here is the identification of common needs and 

establishing common standards and hardware topologies depending on the given 

requirement of the application. Some applications require an ultra-low latency while others 

require an ultra-high bandwidth. Example applications which require ultra large bandwidth 

are the Jungfrau Detector at PSI (Please specify here) and the pixel detector at PSI 

(BANDWIDTH). While at the other hand some applications require ultra-low latency such as 

trigger distribution systems and monitoring devices. Bandwidth is often trade to the expense 

of latency demanding a complete different strategy depending on the user case.    

 Data transfer and injection are important for ultrafast data acquisition in four distinct ways: 

 

1. Latency of the solution. For real time feedback applications latencies must be as 

short as possible to avoid pile up or loss of important data. Examples of real time feedback 

applications are beam stabilization applications and trigger distribution. For high data rate 

application latency might exist, but can be hidden by buffering incoming data while 

performing calculations on previously acquired data in parallel. 

2. Throughput of the solution. Throughput is foremost determined by the capabilities of 

the hardware that is used to transfer the data but also by the software stack used for data 

transfer. 

3. Scalability of the solution. Scalability means that with growing demands the data 

transfer solution provided can be adapted, so that there is at best a linear relation between 

increase in throughput and increase in resources needed for data transfer. Scalability also 

means that solutions can be scaled to different hardware platforms if growing demands in 

throughput require this. 

4. Resilience of the solution. If data production is expensive as is the case at many light 

sources, data loss during transfer or injection is inacceptable. As such, resilience of solutions 

is important to minimize the possibility of data loss. 

In the following the status of data transfer and injection within UFDAC is summarized and 

discussed with reference to latency, throughput, scalability and resilience if applicable. 

Contributions from ELI-ALPS, ESRF, PSI, European XFEL, and HZDR are included. 
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2. Overview of basic technologies and Infrastructure 
 

2.1 Technologies for connecting devices 

PCI-e 

Peripheral Component Interconnect Express, officially abbreviated as PCIe or PCI-e, is a high-

speed serial computer expansion bus standard. 

 

RDMA 

Remote direct memory access (RDMA) is a direct memory access from the memory of one 

computer into that of another without involving either one's operating system. This permits 

high-throughput, low-latency networking, which is especially useful in massively parallel 

computer clusters. 

 

Ethernet 

Ethernet is a family of computer networking technologies commonly used in local area 

networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). 

Systems communicating over Ethernet divide a stream of data into shorter pieces called 

frames. Each frame contains source and destination addresses, and error-checking data so 

that damaged frames can be detected and discarded; most often, higher-layer protocols 

trigger retransmission of lost frames. 

 

Infiniband 

InfiniBand (abbreviated IB) is a computer-networking communications standard used in 

high-performance computing that features very high throughput and very low latency. It is 

used for data interconnect both among and within computers. InfiniBand is also used as 

either a direct or switched interconnect between servers and storage systems, as well as an 

interconnect between storage systems. 

 

2.2 Key technology challenges of computing hardwares 

GPUs 

Historically GPUs were made for image processing with the desire for fast parallel processing 

of individual pixels. Today’s frameworks like OpenCL, CUDA or HCC enable todays GPUs for 

the wider use in highly parallelizable problems. One of the main concerns with this 

technology is that the average project live spans vary between 10 and 15 years, while at the 

other hand it is very hard to foresee which architectures, frameworks will be supported over 

this time span. Project requirements like scalability are not always clear at the beginning of 

the project and do vary often during the course of a project. This project enabled us to 
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identify similarities between different in house projects and perhaps maybe even more 

important across different facilities. Large parts of computer codes could be reused for 

different purposes without to re-invent the wheel over again 

 

FPGA 

Historically FPGA’s could be seen as a kind of gluing element between specialized integrated 

circuits (IC). Its principle is based on thousands of programmable elements with connections 

that can be programmed in order to achieve the desired functionality. Today’s FPGA are 

evaluated towards highly versatile interfacing and processing elements which are able to 

combine different technologies (e.g. CPUs, DSPs, Logical Blocks, Clocks, …) on a single piece 

of silicon. The huge advantage of a FPGA with respect to GPSs and CPUs is that its 

architecture is not fixed but completely configurable optimised for a certain processing task. 

For instance data types, memory structures, specialized processors can be implemented 

arbitrary. Typical applications of FPGAs can be found in prototyping, image and signal 

processing and even in artificial intelligence. 

 

Conventional computing platforms  

Despite GPUs and FPGAs in general enable faster data acquisition and processing than 

classical CPU architectures, modern CPUs may be also suited and cheaper than specialized 

hardware. Recent developments in CPU architectures with the inclusion of fast vector 

extensions like SSE, AVX or VSX enable to become more powerful and bring GPU technology 

towards the CPU from generation to generation. One of the big advantages of CPUs is the 

easy for development, debugging and profiling, tasks which are extremely hard on GPUs and 

FPGAs. Therefore, it would be desirable to be able to develop application on generic CPUs 

and within the same framework being able to scale the application towards high 

performance GPU cluster. A good example for project aiming this goal is Alpaka currently 

being developed at HZDR. 

 

2.2 Computing infrastructures 

The data acquisition system of ELI-Beamlines, as described in PBa18lg is based on a low 

latency network which enables sharing of memory pools between nodes of data acquisition 

servers.  

In ELI-Beamlines, we focus on the actual practical implementation of a scalable data 

acquisition system with low latency and high throughput.  

There is significant work being done on the implementation of data processing services, but 

due to the nature of our facility (multiple, complex, but often independent experiments; 

comparatively low volume of “global” online-processing), the current focus is on providing 
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the strongest-possible infrastructure the actual acquisition (from detector / digitizer /.. into 

storage.) 

The underlying foundation is an optical network with >15.000 single-mode fibres running at 

10 GB/s (scalable to 100 GB/s) (see Figure 1), which is divided it into three physically 

separated networks, for control, synchronization and data acquisition; following the 

scientific DMZ network architecture. 

At the moment, we see first applications with throughputs of 10 GS/s and more from 

digitizers (for example: ADQ7-DC-F10-MTCA) and 2D-detectors (this corresponds to 1 

GPixel/s). Several of those are already implemented, and the number is rapidly growing as 

installation progresses. 

The system we designed (Figure 2) is divided into two parts: Top level and Local level. 

 

Top level data acquisition system 

In the server room, data is acquired, processed and stored using three main components: 

• a blade server for DAQ which contains a 2x Infiniband FDR switch in the rear, a 2x 

Ethernet switch 10/40GBASE-X in the rear and currently 14 blades, each blade has 24 

cores and 768 GB of memory for the buffer pool. 

• the Infiniband network (network interface cards, cabling and switches) acting as a 

low-latency interconnection inside the blade server and to the data storage  

• the multi-tier data storage where the tier-1 is based on flash drives, tier-2 is based on 

standard hard drives and tier-3 is based on tape library. (Implemented in stages, 

initially 6 PB) 

 The RAM of the DAQ server, which acts as a memory buffer, is considered tier-0. 

 

 
Figure 1: View of server room / optical network installation 
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Figure 2: Overview of the Data Acquisition System in ELI-Beamlines 

The DAQ servers are hereby used for three purposes: 

• Data aggregation from the DAQ hardware installed in the hall using either pure NICs 

(Mellanox MCX4121A-XCAT: 2x 10GBASE-X, RDMA support) or FPGA cards (Alpha-

Data ADM-PCIE-KU3: FPGA XCKU060, 2x QSFP, SDAcell support, 8 GB DDR; Mellanox 

Innova Flex LX-4 :FPGA XCKU060, 1x QSFP, RDMA support, 2 GB DDR) 

• as a memory buffer pool (tier-0) that is safe from EMP and can be shared across 

processing units using Infiniband, giving also access to associated systems such as our 

HPC 

• as a host for online data processing using both computer cores and the above 

described FPGA cards for acceleration. We do prefer FPGA as core accelerator 

(directly incoming data, no bottleneck from PCIe), but provide some Xeon Phi / GPU 

for users.  
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Local data acquisition hardware 

On the local level, we have two types of local DAQ hardware:  

• standard PCIe-based DAQ systems (Supermicro) with 128 GB of RAM, 24 cores and 10 

PICex8 slots. These servers are low-cost, can provide large memory buffers 

(terabytes) and there is a wide variety of PCIe-cards for different applications  

• MTCA-based DAQ systems, which have the advantage of clock support (timing 

system, see next section) in the backplane and allow card-to-card-connection 

without involving the CPU. They have one limit: Due to the card size, the AMCs can 

only have 16 GB of buffer. 

However, when we want to use the advantages of both (clock support, card-to-card-

connections, large memory buffers), our MCH (NAT-MCH-PHYS80) allows to connect its 

internal PCIe switch through optical cable to PCIe based local DAQ server. The connection 

setup (shown in Figure 3) provides PCIe x16 interface and can be implemented using PCIe on 

MTCAs’ agnostic backplane and its fat pipes. 

Performance of the implementation 

The installation of all major components of the ELI DAQ system was finalized in 2017.  The 

data acquisition needs of the users are still quite modest, but expected to rapidly grow once 

the secondary sources are fully operational. 

 

 

Figure 3: Standard PCIe DAQ system (top) connected with MTCA DAQ system (bottom) via optical fibre -PCIe 
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Furthermore, we are starting with small simulations and pilot projects regarding a new 

approach to network load management. Like most facilities, we see high fluctuations in 

network load and anticipate these to worsen with increasing data loads. Many network 

component vendors (including CISCO – which we are mainly working with) are starting to 

offer technologies for automatic balancing by directing the traffic on switch level, which we 

believe to be foolish: Such systems can only work well in homogeneous environments, and 

lead to vendor lock-in. Big physics research, especially user facilities, has a highly diverse 

landscape of “data producers”. 

Since our entire network is highly performant, we want to use our top level DAQ server 

hardware as a buffer for network load balancing.  We are currently evaluating the capability 

of Infiniband (Mellanox), OmniPath (Intel), and CAPI (OpenPOWER foundation) together with 

our Tier-0 storage as network RAM buffer for load flattening. 

 

3. Identified and developed solutions bridging 

technologies and performance results 

3.1 Performance report on remote direct memory access (ELI-ALPS) 

3.1.1 Introduction 

Modern High Performance Computing (HPC) centers provide high-speed/low-latency 

network interconnects for the compute nodes. However, in order to harness the 

performance of this interconnects in an efficient and effective way a better understanding of 

data-injection handling is required, which depends on the available hardware and installed 

software stack. 

The main aim of the report is to investigate the bandwidth and latency of these high-speed 

interconnects for different usage modes as function of the data packet size. For this purpose, 

two different benchmark programs are used. One them is the OSU benchmarks (OSU Micro-

Benchmarks, 2017) based on the popular MPI-library and the other is the perftest 

benchmark (perftest, 2017) which perform data-injection at the lowest level. The 

dependence of the hardware stack is investigated by performing the benchmark programs 

on two different cluster, i.e. HZDR – hypnos (NIIF - 'KIFÜ/NIIF' LEO HPC, 2017) and NIIF - 

debrecen2 (HZDR, 2017). 

At the end of the report software design guidelines are formulated allowing future software 

developers to select the most optimal software architecture for their use case. Still, a 

common programming model for multi- and many-core hardware was missing. This report 

introduces the Alpaka, developed within UFDAC, as a possible way to have single source 

development for a large variety of target platforms. 
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3.1.2 Test platforms 

For measuring the bandwidth and latency of the network interconnects two HPC centers, 

NIIF –debrecen2 and HZDR – hypnos were chosen. The benchmarks were performed with 

two different software performances tests, i.e. OSU and perftest. The software and 

hardware configuration are given below. 

HPC center – NIIF 

Software components: 

• CUDA 8.0.61 

• NVIDIA Driver 375.26 

• Mellanox Driver 2.33.5000 

• OpenMPI 1.8.5 

• Red Hat Enterprise Linux Server release 6.8 (Santiago) 

Hardware components: 

• GPUs: 3 x Tesla K20Xm, 6 GB 

• Network Interface card: Mellanox Technologies MT27600 

• CPU: 2 x Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60 GHz 

• System Memory: 12 GB RAM 

The theoretical bandwidth of data transfer between GPUs and GPU - HOST is 8 GB/s since 

the GPUs are operating in PCI-e 2.0 mode over 16 lanes. The theoretical limit of data transfer 

of the NICs is determined to be 8 GB/s since the data transfer is established over PCI-e 3.0 

with 8 lanes. 

HPC center – HZDR 

Software components: 

• CUDA 8.0 

• NVIDIA Driver 367.48 

• Mellanox Driver 2.33.8000 

• OpenMPI 1.8.6 

• Ubuntu 14.04.5 LTS 

Hardware components: 

• GPUs: 4 x Tesla K20Xm, 4 GB 

• Network Interface card: Mellanox Technologies MT27500 Family [ConnectX-3] 
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• CPU: 2 x Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz 

• System Memory: 64 GB RAM 

The theoretical bandwidth of data transfer between GPUs is determined to be 8 GB/s over 

PCI-e 2.0 with 16 lanes. The theoretical limit of data transfer from the Network Interface 

Cards (NIC) and host is given to be 8 GB/s since the data transfer is established over PCI-e 3.0 

with 8 lanes. 

 

3.1.3 Data transfer methods 

For testing the data transfer performance of HPC centres two different kinds of data sources 

and targets are tested. One of them is the ‘Host to Host’ transfer. In this case data transfer is 

performed between the system memories of two compute nodes. As shown in the Figure 4 

the data transfer (write or read) goes from the memory of Node A to the memory of Node B 

through nodes NIC (red arrows). 

The other tests are the Device to Device tests, where the data goes from the memory of a 

PCI-e device of one node to the memory of a PCI-e device of another node. In our test 

environments the considered devices are NVIDIA GPUs. The data flow of this kind of tests is 

shown on the Figure 5 with red arrows. The main advantage here is that during the data 

transfer process the System memory is not accessed and data passes the PCI-e buss only for 

one time. 

 

Figure 4: Data flow of Host to Host data transfer 
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Figure 5: Data flow for Device to Device data transfer 

 

3.1.4 OSU Micro-Benchmarks 

The OSU Micro-Benchmark (OMB) software package is a tool for testing bandwidth and 

latency for network connection (http://mvapich.cse.ohio-state.edu/benchmarks/). 

Host to host benchmarks 

Two types of tests are performed on the different HPC centers. One of them was the 

bandwidth test (osu_bw) and the other was the latency test (osu_latency). 

In bandwidth tests the sender sends back-to-back messages to the receiver and then waits 

for a reply from the receiver. The receiver sends the reply only after receiving all these 

messages. This process is repeated for several times and the bandwidth is calculated based 

on the elapsed time and the number of bytes sent by the sender (OSU Micro-Benchmarks, 

2017). 

 The bandwidth for lower message size (size smaller than 8 KB) is 1.5 times higher for the 

HZDR (Figure 6), however the maximum bandwidth is nearly identical. A possible explanation 

for this behavior may be caused by driver differences. 

In latency tests the sender sends a message to the receiver and waits for the response from 

receiver. The receiver sends back a message after receiving. After many iteration of this 

ping-pong tests the average latency values are calculated (OSU Micro-Benchmarks, 2017). 

We discovered an analogous behavior at NIIF for small message sizes (smaller than 32 bytes). 

The exact reason at the time of writing this report is unknown but is currently under 

investigation.  
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Figure 6: OSU Micro-Benchmarks Host to Host tests at NIIF and HZDR 

Device to device benchmarks 

The GPU to GPU message passing with CUDA-RDMA could be performed at the HZDR. At 

NIFF currently the Mellanox OFED GPUDirect RDMA package is not (yet) available. Similar to 

the host to host benchmark, bandwidth and latency tests were carried out. 

In the bandwidth tests between device to device data transfer another interesting behaviour 

was observed. For message sizes between 1 KiB and 16 KiB the increment of bandwidth 

speed slows down and at 32 KiB the bandwidth rises significantly (3 times larger than at 

previous message size). 

 

Conclusions 

The OSU Micro-Benchmarks tests have shown the power of high bandwidth 

interconnections and by using GPU Direct RDMA technology of NVIDIA the GPU based 

computation can benefit from this interconnection as well. By using GPU RDMA latency is 

reduced for smaller message size (smaller than 32 KiB). 
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Figure 7: OSU Micro-Benchmarks Device to Device tests at HZDR 

 

 
Figure 8: OSU Micro-Benchmark tests for HZDR 
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3.1.4 Perftest 

A second benchmark software was used to confirm the results of the OMB tests. The 

‘perftest’ is a software tool to test network performance. This tool was selected because of 

the performance test of NVIDIA for modern HPC platforms (NVIDIA Accelerated Computing, 

2017). The perftest benchmark uses the directly ibverbs library (libibverbs, n.d.) to send and 

receive messages with RDMA (RDMA, n.d.), unlike at OMB tests, where RDMA is supported 

through Open MPI (Open MPI, n.d.). 

 

Host to host 

Two types of tests were used like at OMB tests, the bandwidth (ib_send_bw) and the latency 

(ib_send_lat). 

 

 
Figure 9: ‘Perftest’ tests Host to Host at NIIF and HZDR 

 

Device to device 

Only at the compute nodes at HZDR we could perform the GPU to GPU tests using ‘perftest’ 

benchmark since the package supports only bandwidth tests with CUDA GPU Direct RDMA. 

This is unfortunately not yet implemented at NIIF. 

 

Conclusion 

The results confirm the outcome of the OMB between host to host, but at the device to 

device tests an unexpected behaviour was discovered. Currently the poor performance of 

GPU to GPU tests is under investigation. 
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Figure 10: 'Perftest' bandwidth test Device to Device at HZDR 

 

 

 

 
Figure 11:  'Perftest' bandwidth tests at HZDR 
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3.1.5 Conclusions 

The results of Host to Host tests show that the Open MPI based data transfer has lower 

bandwidth than the low-level ibverbs based data transfer for smaller package sizes (size 

smaller than 16 KiB), however the maximum bandwidth is very similar for both transfer 

types. Concerning latency, the tests show that the Open MPI based solution has a higher 

latency than the ibverbs based method. The optimal bandwidth of Host to Host data transfer 

for Open MPI based solution is found for 16 KiB and 2 KiB for ibverbs. 

The Device to Device tests show that the maximum bandwidth is smaller 6317 MB/s vs. 5388 

MB/s and latency is higher with the Open MPI based solution. The optimal message size is 

quite large, i.e. 1 MiB. The OMB tests for Device to Device with and without enabling GPU 

RDMA showed (Figure 7) that the use of a CUDA based solution is worth, especially for 

smaller message size (smaller than 32 KiB) where latency can be three times smaller and 

bandwidth can be ten times larger. For the ibverbs based solution an anomaly was found 

and therefore the peek bandwidth is significantly smaller 6032 MB/s vs. 835 MB/s.  

One may note that the development process for Open MPI based solutions is less 

complicated for Host to Host and for Device to Device (CUDA based solution) and the Open 

MPI is well known for developers. Therefore, we would recommend, based on the current 

results, the use of the Open MPI based solution if the message size reach the optimum level 

of the Open MPI based transfer (16 KiB) and latency is not critical. For GPU based 

computational tasks it is recommended to use the Open MPI based solution. The low-level 

ibverbs based solution is preferable, when the message size is small and latency is critical.  
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3.2 RASHPA (ESRF) 

3.2.1 Introduction  

Data production and analysis are the essential components at the heart of any scientific 

experimental application. The produced data rates by x-ray detectors increases significantly, 

as the technology of the photon sources evolves. 

Modern high performance 2D detectors are able to produce very high throughput in the 

range of 1-100 GBps. Eiger 9-Mpixel and Jungfrau-10 MPixel detectors developed at the Paul 

Shearer Institute (PSI) are examples of throughputs that can go up to 360 GBps and 400 

GBps respectively.  Such data streams are challenging to transfer, manipulate and process in 

acceptable times.  

Traditionally, efforts on detector development for photon sources have focused on the 

properties and performance of the detection front-ends. In many cases, the data acquisition 

chain was treated as a complementary component of the detector system that was added at 

a late stage of the project. In some cases, the data acquisition subsystems, although 

achieving minimum bandwidth requirements were kept relatively simple in term of 

functionalities, in order to minimize design effort, complexity and implementation cost. 

This approach is changing in the last years as it does not fit new high performance detectors; 

industrial data acquisition protocols do not provide the required data throughput and 

implementing high performance schemes becomes much more difficult and resource 

consuming. Detector developers are changing their paradigm and moving into the 

development and implementation of reusable high performance data acquisition schemes 

that can be applied to different kind of detector devices. 

The design and implementation of efficient data acquisition scheme with multi-gigabyte per 

second capabilities become a mandatory and unavoidable solution to deal with such data 

rates. RASHPA (RDMA-based Acquisition System for High Performance Applications) is the 

generic data acquisition framework currently under development at the ESRF. It is optimized 

for the transfer of 2D detector data, i.e. images, metadata, etc., relying completely on 

Remote Direct Memory Access (RDMA) mechanism. Therefore, RASHPA is able to push data, 

at maximum throughput into the address space of one or several destination backend 

computers. RASHPA scheme provides a high standardization level in the data transmission 

pipeline from the detector up to the software application for further processing, 

visualization or storage. 

 

3.2.2 Objectives 

The design of RASHPA framework pursues three main objectives discussed as follows: 

 

Promoting standardization and reusability 

The design and implementation of an efficient data acquisition schemes with multi-gigabyte 

per second capabilities and high-level functionality is far from trivial. Therefore, it is of 
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overriding importance that the invested effort can target a variety of detector systems and 

over a long-lasting period of several decades. One of the key reasons behind that is the long-

term development for x-ray detectors that can easily take a decade from concept to product. 

With this purpose, the data acquisition scheme must focus on conceptual and functional 

aspects and should minimize the dependency on a given technology. This is particularly 

important in what respects data link hardware and protocols so that RASHPA should be able 

to adopt future standards, following and profiting from the evolution of data communication 

technology.  

The proposed framework should be independent of the particularities of the detection front-

end and other instrument features that are not directly related to the data transmission 

process. In this way it must be possible to design detectors, in which, the RASPHA related 

functionalities could be included in a reusable functional block with well-defined interfaces.  

In order to simplify the system development without compromising the performance target, 

the rich functionalities provided by RASHPA must be managed at the backend side by 

detector independent code that provides an interface sufficiently high-level to be easily 

exploited by the diversity of detector software applications that may be used in the full 

detector systems. This approach is expected to greatly reduce software development efforts 

and make the data acquisition framework much more attractive for detector developers. 

 

Addressing a wide range of implementations 

Most detector developments for photon sources do not target a single scientific application. 

It is therefore frequent and convenient that the same detector technology and components 

are used for various applications. These applications may have rather different data-

throughput and performance requirements as well as their own set of technical and cost 

constraints. In practice, this is addressed by producing different implementations of the 

detection systems. It is therefore very important that a generic data acquisition framework 

as RASHPA can fit in such a scheme and that the future compliant detectors are not 

restricted only to very high end configurations. 

Scalability is therefore a major issue. In the most demanding experiments, it must be 

possible to build high performance RASHPA based detectors able to send data to computing 

farms by using large number of the fastest data links available at the time of the 

development. At the other hand, it must be possible to scale down the systems to rather 

simple and relatively inexpensive configurations. One important goal behind RASHPA is that 

the system could be rescaled by reconfiguration of the components and not requiring any 

hardware redevelopment. 
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Figure 12: Block diagram of RASHPA’s architecture 

 

Alleviating the data management challenge 

Moving data at high rates from the detector head to memory buffers in the computer 

infrastructure is a necessary step to take advantage of many of the most advanced detector 

systems. This does not solve other difficulties related to data management and 

manipulation. The effective exploitation of such very high-throughput data streams is 

extremely challenging and must consider all the on-line data management aspects from data 

generation and transmission, to data dispatching, visualization, analysis and storage. 

Therefore, RASHPA data acquisition framework should support the following features 

depicted in Figure 12: 

1) Multiple sources and destinations via routable network topology based on high 

speed data links. 

2) Parallel and simultaneous data streams. 

3) Remote direct memory access (RDMA) zero copy transfer features 

4) Potential support of image manipulations and other hardware accelerator algorithms 

at hardware level 

 

As previously mentioned, RASHPA is conceived to serve as basis in the design of the data 

acquisition mechanism for a diversity of detectors. For the sake of reusability and longevity, 

the framework itself imposes very few constraints on the choice of technologies employed 

for the implementation of the actual detector devices. With this approach, it is expected that 

RASHPA will be applicable to a larger scope of detector developments and will take 

advantage of future progress in electronics and data communication technology. It is also 

foreseen that detector software implementations that use RASHPA as its internal machinery 

for data acquisition purposes will provide interoperability with different detector designs, 

and will be usable with various generation of detectors. 
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Figure 13: Basic scheme of RASHPA detector module 

3.2.3 Key Concepts 

RASHPA relies on several actors in order to be implemented. The descriptions and 

terminologies defining those actors are the following:  

1) Detector Module (DM): is a core unit in detectors that includes functional block, 

called RASHPA Controller (RC) responsible of transferring data to Backend Computers 

(BC) via high-speed data links. Figure 13 shows a basic scheme of a RASHPA detector 

module.  

2) Multi Module Detector (MMD): Is a detector consisting of one or more identical DMs.  

3) Backend Computers (BC): These are the final destinations of the data. In RASHPA 

terminology, all the computers that receive detector data are called data receivers 

(DR). The backend computer that is in charge of the configuration and initialization of 

the data acquisition subsystem is called the system manager (SM). Figure 14 shows a 

basic scheme of a RASHPA backend computer. A C-Library responsible for RASHPA’s 

operation, called LIBRASHPA, is integrated in each BC. 

4) RASHPA Telegrams (RT): XML telegrams used to retrieve the capabilities and 

configuration of DM and DRs. RTs are sent to the software library prior to the 

configuration of the RCs present in each DM. 

5) RASHPA Address Space (RAS): it is a single common address space that remaps all the 

memory areas of all the DRs. It appears to be a contiguous block even if it may 

include regions from more than one computer. It could also mix system RAM 

memory buffers with other memory even from an address space of one DR. It is 

constructed by dedicated functions in the RASHPA software library. 

6) RASHPA Buffers (RB): consists of a set of address areas or blocks named local buffers 

(LB) that reside in the address space of one or more DR. The simplest case of RB 

would be a conventional buffer declared in the system RAM area of one DR. 

7) Data slices, data sets and data blocks: Detector data are organized in sequences, 

produced and numbered consecutively, called data slices (DS). A DS can be consisted 

of data produced by DM during a time interval.  

8) Every type or class of data produced by DM and treated separately is called a dataset 

(ex. Image, metadata, etc.). 

9) All the data from a given dataset, produced within a data slice are called Data Blocks 

(DB).  
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Figure 14: Basic scheme of RASHPA backend computer 

 

 

 

 

 

 

 

 

 

 

10) Data Transfer process (DTP): is a description of the direct transfer from DM to RB in a 

given DR. It supports RDMA and guarantees data integrity. In other words, DTP 

specifies what to send, where to send and how to send data. An example of a DTP 

result from a segmented 2D detector composed by six independent modules to four 

RASHPA BCs is shown in Figure 15. 

11) Data Channels (DC): These are functional RASHPA blocks, responsible for data 

transfer from DM to destination buffer. A DC is configured by DTP. In most general 

case, a DTP requires the activation of at least one DC for each DM. 

12) Event channels: These are functional RASHPA blocks responsible of sending events to 

the BCs. Events are asynchronous messages generated by the RC in the DM. They are 

used to signal the detector software application about errors, change of status, 

progress of the running DTP, etc. 

 

 

 

 

 

 

 

 

 
Figure 15: Example of a DTP result from a segmented 

2D detector composed by six independent modules 
to four RASHPA BCs 
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3.2.4 Hardware requirements 

In order to build a RASHPA compliant detector and software application, some requirements 

should be respected at the data link, the detector module and the backend computers. 

 

Data Links 

The transfer of data between the detector modules and the backend computers is achieved 

by fast links that fulfil the following requirements: 

1) Direct memory access (DMA): The full address space of the backend computers 

should be accessible from the RASHPA controllers by RDMA mechanisms. In RASHPA 

scheme, the effort and complexity is put on the initialization and configuration of the 

system; once the data transfer operations started there is no need of any 

intervention by the data receiver’s CPUs. 

2) Asynchronous event signalling: The selected data links must provide a low-level 

asynchronous mechanism to signal conditions that trigger RASHPA events. The 

conditions activated in each case are selected by LIBRASHPA as part of the DTP 

configuration. 

3) Data integrity: RASHPA requires that the data link layer implement all the 

mechanisms necessary to achieve data integrity during the transfer process. It may 

include any packet ordering, retransmission or error correction schemes as needed.  

4) Bidirectional operation: The data links operate as unidirectional channels from the 

detector towards the backend computers. However, the use of bidirectional links 

would allow future functional extensions of the framework such as high-level flow 

control mechanism or embedded control channels. In any case, the data bandwidth 

requirements would be very asymmetric and in order to minimize misuse of the links, 

they should be used as write only channels and avoid read operations. 

5) Data switches: The link technology must be compatible with the implementation of 

data switches for multiple-host configurations. The data switches must provide 

mechanisms to both write data and transmit asynchronous events to the backend 

computers. 

There are no specific requirements on data bandwidth or other minimum performance 

figures for the capacity of the data links. However, a main goal of the RASHPA framework is 

to allow very high throughput data transfers. It is therefore expected that the RASHPA based 

systems will use advanced data links for which the implementations will evolve in the future 

following the evolution of the data communication technology. 

From a purely functional point of view, the link technology considered the most suitable to 

be used in a RASHPA system is PCI Express over cable, and it is the choice adopted for the 

implementations of the first prototype. PCIe is the natural extension of the internal bus of 

the backend computers and it does not need any software protocol. The hardware and the 

operating systems of the computers take in charge the full initialization of the data links that 
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provide data integrity and minimum latency. In addition, PCIe endpoint can be integrated in 

the detector modules with a reasonable design effort. Disadvantages of using this link 

includes the limited availability of commercial off-the-shelf data switches and PCIe links 

based on optical cables as well as the small packet transfer size. Therefore, other candidates 

based on more widespread technologies, such as Infiniband or Ethernet, should not be 

discarded. Although Ethernet would need to be extended with remote DMA protocols 

(RDMA) such as iWARP or RoCE. 

 

Detector Modules 

The RASHPA framework specifies the functionality of the detector modules but not the 

internal resources required to achieve such functionality. 

In the case of DM with multiple data links, the DM must either, know in advance or detect at 

runtime, how many data links are physically connected and in operational state. A module 

must be able to operate even if only part of the data links is operational during DTP 

initialization. All the operational data links must be able to access the full RAS. The 

framework does not specify how the data write operations are shared among the various 

links, this is the responsibility of the module developers. 

A detector module must implement the required functionality of a RASHPA controller and 

integrate, in addition to the fast data link interfaces, high-level configuration features and 

powerful data manipulation capabilities. 

 

Backend Computers 

All the backend computers in a RASHPA based data acquisition system must be based on the 

Linux operating system and run detector software that include and use one instance of the 

LIBRASHPA library. The backend computer that acts as SM plays a central role for 

initialization, configuration and overall system monitoring. The SM must manage or at least 

have access to the control link. 

All the BCs must also include the data link hardware interfaces that are required to 

implement the configuration selected for the particular application. Both the SM and DR 

must be able to accept and treat the asynchronous messages from the DMs that trigger 

RASHPA events. 

The DRs must be able to map RASHPA buffer in their system address space. The data 

destination buffers will be in most of the cases large memory areas in system RAM but they 

may also consist of buffers in extension boards such as GPU or FPGA coprocessors or disk 

controllers. 
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Figure 16: Functional steps in RASHPA system 

3.2.5 System functional description 

RASHPA framework defines the conventions, procedures and functionality that a compliant 

data acquisition system must implement. DMs must be configured at the initialization phase 

and operate as expected by the DTP. At the backend side, the detector application software 

uses the high-level specific functionalities provided by LIBRASHPA library to comply with the 

framework. It is the responsibility of the detector applications to orchestrate the full 

operation of the complete system. This is done by properly combining the control of the 

detector with the calls to LIBRASHPA functions. The detector application is also responsible 

of the intercommunication with various computers in the case of multiple backend 

configurations. 

Figure 16 illustrates the different steps and partial operations in a RASHPA system. The 

figure shows the dependencies of the various steps and the order in which the detector 

application has to handle them.  

When a detector application repeats acquisition and data transfer sequences not all the 

operations have to be done again and the application will normally loop across the operation 

flow in Figure 16. 

The initialization of the system must start by the initialisation of the main system 

components: the backend computers (B1 to B5) and all the detector modules (M1, M2). 

Once all those individual components are initialised the system manager may proceed to 

complete this first phase by initialising the data switching system (S1) and dispatching the 

configuration of the communication system to all the data receivers (S2). At this point the 

system is ready to start the configuration phase. 

The first step in the configuration phase is the definition of the RASHPA buffers (R1) that will 

be used to receive the data streams during the data transfer operations. This step is 
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necessary to generate and upload the RAS map (R2, R3) into all the detector modules. The 

next configuration step is the generation of the configuration of the DTPs (D1) that must be 

uploaded into the detector modules (D2). 

At this point the system is ready to start data transfer by activating the configured data 

channels. 

 

3.2.5 Software library 

LIBRASHPA is the piece of software in charge of managing all the specific aspects of a 

RASHPA based system. LIBRASHPA is thought to be a Linux library written in C language that 

must be included in the detector software applications such as LIMA data acquisition and 

control library used at the ESRF and other synchrotron radiation facilities [10]. 

The main duties of a LIBRASHPA manager are: 

1) Compiling the capabilities of all the DMs and the information from all the DRs in the 

system. 

2) Initializing backend components, such as data switches in case of routable network. 

3) Building and maintaining the RASHPA global address space. 

4) Managing the configuration of the data reception buffers and provide the 

information required by the DRs. 

5) Providing the configuration of the detector modules from the definition of the 

requested DTPs. 

6) Managing and triggering system wide events and passing information to the detector 

application. 

The duties of a LIBRASHPA for data receivers include allocating physical memory for data 

reception, triggering receiver events and passing the information to the detector application. 

 
Figure 17: Architecture of a RASHPA FPGA implementation 
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3.2.6 RASHPA prototypes and results 

Two types of implementation should be identified: hardware and software implementations. 

From the hardware point of view, the FPGA implementation of RASHPA is independent of 

the type of high speed data link used to perform the data acquisition process. 

The FPGA implementation presented in the following paragraphs is based on an AXI 

subsystem implemented on a Xilinx KC705 development board. It is considered as a separate 

intellectual property (IP) that can be easily integrated within the ESRF control systems. In 

this implementation, a PCIe over cable data link was chosen for the reasons mentioned in 

the introduction. 

The AXI subsystem implementing RASHPA on the KC705 development board, Figure 17, 

consists of several IPs, some from Xilinx and others designed ad-hoc: 

• Detector Interface Unit (DIU): This unit reads the image data and store them in a 

DDR3 memory on board. 

• Block Generation Unit (BGU): It contains all the data channels that are configured 

prior starting the data transfer process. This unit outputs 256-bit packets containing 

all the information about each transfer, such as source address in the DDR, 

destination address index of a physical address in an address translation unit, bytes 

to transfer, etc. 

• Address Translation Unit (ATU): This is an internal memory containing the physical 

address of the available memory buffers on each DR. 

• Block Split Unit (BSU): It is responsible of reading and analysing BGU’s output data, 

getting corresponding addresses from the ATU, and configuring the Central Direct 

Memory Access (CDMA), and the PCIe IPs. 

• CDMA: a Xilinx built-in direct memory access IP. 

• PCIe: a Xilinx built-in transfer layer IP 

All the previously described IPs are configured through the e-bone interconnect [10] which is 

the ESRF standard interconnect used for control applications. 

A RASHPA system must be able of sending data to multiple destinations, thus it requires a 

routable network. As this implementation has adopted PCIe for data transmission, one 

requires to use PCIe switches for packet routing. Such components are not so common, but 

one could find some of them such as the Dolphin IXS600 from dolphinics and OSS-PCIe-1U-

SW-x4-2.0 from one stop systems. 

For the demonstration purpose, we made the decision to use the PXH810 board which 

integrates a PLX8749 PCIe switch. 

The board comes with a Linux driver that is not compatible for RASHPA’s application. We 

have then re-implemented the driver of the PLX switch in order to fit the RASHPA needs. The 

PXH810 board is plugged in a BC, with one PCIe cable adapter board. The adapter board links 

the current BC to the DM, whereas the PXH810 connects the current BC to another BC. This 

way, RASHPA can send data to two BCs via the PCIe switch. 
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The workstation middleware called librashpa, a Linux library, is in charge of providing the 

client application with data transmission services through a well-defined application 

programming interface (API). An example of client is the LIMA data acquisition and detector 

control library widely used at ESRF and other synchrotron radiation facilities. The 

middleware layers depicted in Figure 17 support the following characteristics: 

• Configuration: this layer is in charge of building description of the hardware such as 

when and where to transmit data. 

• Device abstraction: Since RAHSPA is link independent, the PCIe endpoint discussed 

earlier can be replaced with any other data link such as Ethernet, Infiniband, etc... 

The device abstraction layer hides low-level details and provides the software with a 

generic interface to access the underlying devices. While most of the layer is 

implemented in user space, special operations such as interrupt handling require a 

thin driver. 

• Memory management: RDMA transfer requires to work with the BC’s physical 

address space, however typical client application buffers are allocated in the process 

virtual address space. The middleware thus provides a virtual memory allocator on 

top of an internally managed physical memory allocator. 

• Unified Event Model: There are multiple sources of events that would make 

sequential programming difficult. For instance, data transmission completion is 

signalled by the detector using an interrupt along with auxiliary data; LINUX informs 

about PCIe device adding or removal using system notifications; Timers and callbacks 

may be registered by the client application itself. For those reasons, the middleware 

programming model is largely event based and provides software abstractions that 

unify the different event sources. 

The first RASHPA prototype was developed in the frame of the European project CRISP. In 

the first version, RASHPA supported the data transfer from a DM to one BC. It has been 

tested and validated using a data generator emulating the detector behaviour.  

In the current version, Figure 18, RASHPA has been integrated to the SMARTPIX, a Medipix3 

based detector currently under development at the ESRF.  In that perspective, the KC705 

development board has been replaced with a commercial PFPKX7 board from Techway. The 

new of prototype version also supports the multiple destinations feature thanks to the use 

of PCIe switches. Copper cables were used to build and test the routable network although 

fibre optics cabling is also available. In this implementation, two types of PC are used: a so-

called detector PC having 64 GB of internal DDR, and Gen3x16 PCIe endpoint, and an 

industrial PC with only 4 GB on internal DDR and Gen1x1 PCIe endpoint. The PFPkx7 

supports Gen2x4 PCIe, thus the link connecting the detector to the detector PC is negotiated 

to Gen2x4 whereas the virtual link connecting the detector to the industrial PC is limited to 

Gen1x1. 
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Detector PC as DR and SM

PXH810

PFPKX7

Industrial PC as DR

XRAY detector  

Figure 18: RASHPA prototype 

Due to the difficulty of producing real detector images with the current SMARTPIX hardware 

without an x-ray source, a Java image generator application was developed, where the ESRF 

logo was used as a reference image. A screen shot of an experiment is illustrated in Figure 

19. In this experiment two data channels where configured to send the original image to the 

detector PC and a region of interest of that image to the industrial PC based on some 

configuration sent by the system manager to the RASHPA controller. 

Measured throughput when Gen2x4 PCIe endpoint is the target is 68% of the Gen2x4 

maximum bandwidth when measured within the FPGA and 51.15% when measured at the 

application level. Similarly measured bandwidth at the Gen1x1 is 71.99% and 56.28% when 

measured at the FPGA and application level respectively. These losses in the data 

throughput are due to the configuration of the DMA which is imposed by RASHPA as well as 

the restriction of the PCIe packet size limited to 4 Kbytes. Some other latency can be added 

when throughput is measured at the application level due to the processor execution time. 

 
Figure 19: RASHPA prototype 
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Figure 20: RoCE-v1 vs RoCE-v2 packets 

 

3.2.7 RDMA-based data acquisition over 100GbE 

Ethernet is a computer networking protocol introduced in 1983 and standardized as IEEE 

802.3. It divides the data stream into shorter pieces called frames. Each frame contains 

source and destination Media Access Controller (MAC) addresses, Ethernet type, data and 

error-checking code for the frame data. 

The Ethernet type field specifies which protocol is to be included in the frame. Internet 

Protocol (IP) is one of these communication protocols and is the level 3 in the Open Systems 

Interconnection (OSI) model which constitute the Ethernet communication standard. User 

Datagram protocol (UDP) is one of the essential communication protocols used by the IP 

protocol. The UDP frame consists of several fields in addition to the Ethernet header and the 

IP header: source port, destination port, length, checksum and payload data. 

RoCE (RDMA over converged Ethernet) is an ethernet protocol based on the Infiniband 

specification, and available in two different versions: RoCE-v1 and RoCE-v2 or routable RoCE. 

RoCE-v1 is an Ethernet layer non routable protocol whereas the routable version is the most 

interesting for RASHPA’s implementation. 

RRoCE is an RDMA capable, layer 3 network based on UDP/IPv4 or UDP/IPv6, and relying on 

congestion control and lossless Ethernet. It is currently supported by several off-the-shelf 

network adapters as well as the latest Linux kernel drivers. 
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Figure 21: Calculation of invariant CRC for RoCE protocol 

RASHPA allows detectors to push data (images, regions of interest (ROI), metadata, events 

etc...) produced by 2D x-ray detectors directly into one or more backend computers. 

RASHPA’s main properties are its scalability, flexibility and high performance. It is intended 

to have an adjustable bandwidth that can be compatible with any backend computer.  

The UDP payload data of a RRoCE protocol, illustrated in Figure 21, contains an infiniband 

header, the actual data payload in addition to an invariant cyclic redundancy check (iCRC) 

field that is mandatory for the RoCE packets in order to be accepted by the network adapter. 

The iCRC field is retained from the Infiniband specifications. Note that, an Ethernet frame 

does also contain another CRC field for the global packet. 

The calculation of the iCRC algorithm for RoCE-V2/IPv4 is performed following the below 

steps: 

• Extract RoCEv2: IP+UDP+InfiniBand.   

• Add Dummy LRH field, 64 bits of 1s. 

• For RoCEv2 over IPv4 

• Time to Live = 1s 

• Header Checksum = 1s 

• Type of Service (DSCP and ECN) = 1s 

• UDP checksum = 1s. 

• Resv8a = 1s 

• CRC calculation is based on the crc32 used for Ethernet networking, 0x04C11DB7. 

• CRC calculation is done over the UDP frame starting from the most significant bit of 

the most significant byte. 

• Inversion and byte swap has to be applied in order to get the invariant arc to be 

integrated in the RRoCE frame 
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Figure 22: Timing diagram of the iCRC calculation 

A first FPGA implementation trial of the RRoCE has been performed using the unreliable 

datagram mode (UD). In this mode data are sent in streams without any acknowledgement 

from the receiver side.  The target FPGA board was the KCU116 by Xilinx and the target 

network adapter was a Mellanox ConnectX-4 (MCX415A-CCAT) board. It is important to note 

that in Ultrascale+ families, the 100G CMAC IP core is a hard IP having LBUS (Local BUS) as 

input/output, which is converted into AXI stream bus to be integrated in system on chip 

designs. 

In fact, the basic challenge in the FPGA implementation of a RRoCE algorithm is the optimal 

implementation of an iCRC algorithm. Figure 22 depicts the timing diagram of the design. 

Data of 64 bytes are streamed at each 3.125 ns clock cycle period except the last cycle that 

may contain partial data that requires multiplexing via the AXI stream “tkeep” signal for byte 

selection. 

A pipelined iCRC design requires 64 clock cycles in order to calculate the iCRC over the 64-

bytes input. After 64 clock cycles, the design will be allowed to continue the calculation over 

the second 64-bits input data. That means that 200 ns are lost for each data calculation of 64 

bytes. Supposing that the transmitter sends 12.5 GB (100 Gbits) of data, that will 

theoretically take one second to be transferred over a 100 Gbps Ethernet link, the actual 

theoretical transfer delay caused by the iCRC calculation will be 42 ms that is 4.2%.  

 
Figure 23: Architecture of the proposed RDMA over Ethernet protocol 
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Figure 24:  Representation of local memory buffer in the backend computers 

RRoCE is a well-developed commercial protocol supported by the ib-verbs library available in 

the latest Linux kernels. However, one can even go faster in data transfer due to the iCRC 

calculation problem and the overhead used for the Infiniband header. In addition to the 

previously mentioned reasons, controllability and observability over an in-house developed 

protocol is a major advantage for an ESRF RDMA over Ethernet protocol over RoCE.  

The proposed RDMA over Ethernet standard proposed in this paper will mainly use the 

UDP/IP protocol for routability, and information about each transfer in the unused source 

and destination ports of the UDP header.  

The proposed standard relies on the interactions of three major actors. The first one is the 

RASHPA controller on the x-ray detector side which is the data transmitter. The second one 

is the FPGA board acting as a data receiver, which will transform UDP packets coming from 

the transmitter side into PCIe DMA-based packets and sent to some buffers on the data 

receiver computer which is the third actor in the system. Figure 23 illustrates the 

architecture of the overall system.  

There will be a software library called LIBRASHPA installed on the data receiver side that will 

help allocating memory buffers of different sizes to be used as final data destinations. These 

buffers will be identified by an identification number (ID), a size, and the IP address of the 

data receiver as depicted in Figure 24. The RASHPA controller, which is the transmitter, 

should have enough knowledge about these three parameters, however the receiver FPGA 

board should store the real physical address of the allocated buffers for address translation. 

Figure 25, shows the FPGA implementation of the Ethernet transmitter side via the Xilinx 

100G cmac IP. Data streams coming from the detector are stored in a DDR4 memory. 

Whenever a full image is written to the DDR, the RASHPA controller will configure a Direct 

Memory Access (DMA) IP allowing it to read the data via an AXI4 interconnect, and sends it 

as stream of data (AXI stream bus) to the header insertion IP. The header insertion IP gets its 

configuration from the RASHPA controller. In fact, the configuration of the header insertion 

unit is nothing but the UDP header and the destination local buffer represented by the 

following parameters stored in an internal Block RAM (BRAM) during the configuration 

IP Add 0 IP Add 1 IP Add 2 

Lbuf#0, IP#0, size#x 

Lbuf#1, IP#0, size#y 

Lbuf#2, IP#0, size#z 

Local buffer 

Data receiver 

System manager 

Lbuf#0, IP#1, size#a 

Lbuf#1, IP#1, size#b 

Lbuf#0, IP#2, size#x 

Lbuf#1, IP#2, size#y 

Lbuf#2, IP#2, size#z 

Lbuf0 Phys address 
Lbuf1 Phys address 
Lbuf2 Phys address Lbuf1 Phys address 
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Figure 25: FPGA implementation of the RDMA over 100G Ethernet transmitter side 

phase: the ID, the IP address, as well as an offset respecting the size of the buffer calculated 

by RASHPA controller. The constituted header will be concatenated with the data stream 

coming from the DMA. Since the CMAC IP has a local bus (LBUS) input/output interface, a 

bridge between the AXIS to LBUS has been implemented and used as an intermediate stage 

between the header insertion unit and the CMAC IP. The configuration of the whole process 

can be done using the same Ethernet link or via an external link such as 1 GB Ethernet, PCIe 

over cable, etc.  

At the receiver side, Figure 26, the CMAC output data as LBUS are bridged to an AXI stream 

interface before it gets analyzed in order to resolve the physical address of the final 

destination buffer. Actually, during the configuration phase, LIBRASHPA should store the 

physical address of each local buffer in a BRAM inside the receiver’s FPGA. The output data 

of the header analyzer unit can be stored in a DDR4 or FIFO for synchronization, then sent to 

the PCI express endpoint for DMA transaction to the final destination. The whole process is 

controlled by a finite state machine implemented in the driver IP. 

 
Figure 26: FPGA implementation of the RDMA over 100G Ethernet receiver side 
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Figure 27: Packet loss detection algorithm 

In order to guarantee no packet loss, one can use a converged network, but in case of lost 

packets, the data receiver should be informed. For that, a simple packet loss detection 

algorithm has been implemented. It consists of a 1024-bit shift register, each bit in this shift 

register represents one packet number represented by its sequence number. When packet 

sequence number “512” is received, the receiver looks for packet 1 if it is missing than it 

generates an event to inform the data receiver. The same process repeats for each received 

packet, which means that the receiver can identify a lost packet after 512 packets. The 

process is illustrated in Figure 27. 

The implementation of the proposed prototype as well as RoCE-V2, targets a Xilinx FPGA 

development board (KCU116) which is based on the XCKU5P Kintex Ultrascale+ family. In 

case of the proposed prototype, the receiver implementation targets an industrial board 

called XpressVUP developed by Reflexces. It is based on a XCVU9P virtex ultrascale+ FPGA 

with an integrated Gen3x16 PCIe endpoint. The PCIe endpoint is comparable to the 

integrated one in the Mellanox network adapter card, MCX415A-CCAT, used as a RoCEV2 

backend. The FPGA boards integrate a hard MAC IP core supporting 100 GB Ethernet. A UDP 

stack has been implemented on the FPGA allowing the RASHPA controller to construct the 

frames of data and the back-end to read these packets and analyze them before 

transforming them into DMA configurations. Post route of the front-end (transmitter) FPGA 

implementation show that the design occupies around 50% of the total CLBs and 21 % of 

BRAM of the selected XCKU5P FPGA. 

To confirm the correctness of the constructed packets and to test the transfer bandwidth, 

the Mellanox NIC was used together with wireshark software on a PC running on Linux 

debian distribution.  

The realized experiments allow building correct UDP packets, however the UDP receive 

buffer overloaded when measuring UDP bandwidth due to the high transfer rate without the 

ability to empty it. Hardware RoCE-V2 as well as soft-RoCE were also tested between two 

Mellanox boards running at 100 GBps.  

In order to provide a fair comparison of the transfer throughput of both protocols, one 

should exclude the CRC implementation because it will terribly affect the transfer rate. 

First of all, and in order to have an idea about the transfer one could achieve with the 100G 

link itself, FPGA to FPGA UDP transfers were selected.  Different configurations of the MAC  
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Figure 28:  Bandwidth Vs Packet size for the 100GbE link 

IP including packet sizes and number of packets to send were selected. Figure 28 illustrates the 

obtained results, and shows that the 100G transfer can reach a rate of 90 GBps for a minimum packet 

size of 1 kB and becomes stable at 95 GBps for packet sizes of 32 Kb and above. Small packet sizes 

decrease significantly the throughput. 

The throughput comparison between RoCE and the proposed algorithm was based on pre-

constructed data packets of 598 bytes. The same configuration was adapted for both algorithms 

where a computer was used to configure the DMA on the transmitter side for each transfer. Note 

that this is not the ultimate throughput to measure because of the CPU interaction at each packet. 

Table 1 shows the measured bandwidth for both algorithms using the adopted strategy. 

Results show that the proposed algorithm is more than 1.5 times faster than the RoCE-V2 protocol 

considering that the iCRC is pre-calculated and only the link is tested together with the receiver side, 

i.e the Mellanox network adapter versus the FPGA implementation of the suggested protocol. Both 

receivers are connected via PCIe x16 lanes. 

It is important to note that while performing these end-to-end tests, either from one FPGA to 

another or from an FPGA to Mellanox board, no lost packets were detected. 
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Table 1: RoCE-V2 vs the proposed prototype measured bandwidth 
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3.2.8 Conclusions and Further developments 

RASHPA will be finalized and used for the first time in the final version of smartpix by mid-

2019. This will be based on the PCIe over cable network tested and validated within the 

EUCALL project. 

Future development will focus on the integration of both the proposed RDMA over Ethernet 

protocol and RoCE all together in the RASHPA framework. Selection between these protocols 

will be based on the price/throughput requirements for each experiment 

 

3.3 Intelligent Ethernet to PCIe bridging (PSI) 

As described in EUCALL Deliverable D5.1: ‘Report on online 2D image processing’, Eiger and 

Jungfrau are module based detectors. Therefore the readout characteristics (number of 

frames per second) are independent of the detector size and the total data rate scales 

linearly with the size.  

Each of these detector modules send out UDP packets independently and in parallel 

containing a section of the image. Since the packet size remains constant the image section 

sent in one packet depends on the bits per pixel. 

On the packet receiving host several receiver threads are running. Each thread is listening to 

one detector module. Due to the flexible architecture the receivers can also be spread over 

several hosts to distribute the load. 

To differentiate between the modules of the detector the UDP header contains information 

about the module id, the frame id and packet id. With this information each receiver thread 

inserts the packet data at the right place in the host memory to build up a complete sub-

image. 

Eiger 

4 Bit/Pixel 

Eiger 

8 Bit/Pixel 

Eiger 

16 Bit/Pixel 

Eiger 

32 Bit/Pixel 

16 lines/packet 8 lines/packet 4 lines/packet 2 lines/packet 

Table 2: Content of a UDP packet for Eiger 
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Figure 29: All detectors can either send to one or to multiple hosts 
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Figure 30: Data flow with the FPGA based network card 

As said before every UDP packet contains only a part of the image. Each part consists of 

several lines of the image. Therefore the receiver thread has to generate several memory 

addresses. Analyzing the UDP header, generating memory addresses and copying data 

around for several threads increases significantly the CPU load. For an Eiger 0.5M (a one 

module detector) running at full speed a four core CPU is fully occupied. In addition to that 

also missing packets have to be detected and handled. The current software solution allows 

discarding the whole image, to store the received data or to pad the missing data. Besides 

storing only the received data, all other solutions mean additional CPU load for data 

handling. 

This is where the intelligent Ethernet to PCIe bridging comes into play. Instead of occupying 

the CPU with these tasks, an FPGA can easily handle several packets in parallel, generate 

memory addresses and copy the data. Being master on the PCIe bus the FPGA can write 

directly into host memory with full PCIe speed. Padding missing data by just leaving this 

memory region free and indicating this in a bitmask as well as discarding images by just 

overriding them in host memory are tasks which can be handled easily by an FPGA. 

After finalizing one or more images the FPGA can issue an interrupt to inform the CPU. 

For a first implementation the Xilinx VCU108 board with a 100 Gbit/s Ethernet and 8 lanes of 

PCIe Gen 3 is used. A design has been implemented which receives network data packets 

from the 100 Gbit/s Ethernet interface and analyses the payload header to generate the 

corresponding memory address. Up to now one memory address per header has been 

implemented. 

 
Figure 31: The FPGA design of the FPGA based network card 
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The design makes use of the available Xilinx IP cores. Beside the 100 Gbit/s Ethernet core it 

uses a transparent AXI-to-PCIe bridge as well as the data mover core to copy the incoming 

payload to the generated memory address. A custom core parallelizes the incoming data 

stream into four independent packet processing pipelines including the custom made packet 

header analysing and memory address generation core. 

Unfortunately the maximum transfer into host memory is limited by the PCIe 3.0 x8 with its 

maximum data rate of 64 Gbit/s. 

To test the maximum data rate as well as the CPU load during the PCIe transfer 

measurements with the Intel Performance Counter Monitor have been done. This tool reads 

the CPU performance registers containing among other things the memory data transfer 

rate. 

Depending on the packet size the transfer rate is 5.6 GByte/s (4096 Byte packet size) or 6.1 

GByte/s (8192 Byte and 16384 Byte packet size). 

The CPU load during this memory transfer is negligible and below 1%.   

For the future it is foreseen that the FPGA is communicating directly with the GPU for 

further more complex image processing tasks similar to what is described in Section 4.3 

“Data conversion of Jungfrau at PSI”. 

 

3.4 Train Builder (European XFEL) 

As described in EUCALL Deliverable D5.1: ‘Report on online 2D image processing’, Eiger and 

Large and fast 2D image detectors do not only produce high data rates (e.g. for 1 Megapixel 

detectors at European XFEL, this is about 10 Gbytes/s), but also acquire and transmit data on 

multiple channels. Therefore each individual channel only provides a certain region of the 

images. However, in many applications, the data of the individual channels have to be 

combined (concentrated) on a central system in order to allow processing of complete 

images. The so called Train Builder is a technical solution, which solves the data 

concentration, re-arrangement of the fragmented data into correct series of full images, and 

to pre-process the data before it is forwarded to further processing or storage systems. In 

that role it also serves as a deterministic high-speed data transfer interface between the 

detector and the storage and/or computing systems. 

The train builder was developed by the Rutherford Appleton Laboratory (UK) and is based on 

the Advanced Telecommunication Computing Architecture (ATCA). Figure 32 shows an 

image of a single train builder module, which could be used to handle data of smaller 

detectors. Figure 33 depicts the complete assembly to handle the data of larger detector 

systems, which includes four train builder modules and one cross-point switch module. 

Finally, in Figure 34, a simplified overview of the basic data transfer chain is shown, including 

a detector, the train builder and a following computing layer. 
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Figure 32: Image of a single train builder ATCA module, which could either be used for smaller detectors (e.g. 

¼ Megapixels) or combined with three further modules of the same kind and one cross-point switch 

interfacing module for larger detectors (e.g. 1 Megapixels). On the left side eight 10 GB Ethernet interfaces 

provide input and output of the detector data. In the center are five FPGAs and one smaller switch hidden 

under the blue framed heat sinks attached to memory banks. On the right high-density connectors provide a 

high-speed interface to further train builder modules and cross-point switch module. 

 
Figure 33: Image of an ATCA crate including train builder and cross-point switch modules to handle data of 

large 2D detectors. The blue fiber cables connect to the detector and to the further computing systems. The 

black cables provide high-speed interfaces between the train builder modules. The grey network cables 

provide configuration, monitoring and control of the train builder system via the control system. 
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Figure 34: Simplified overview of the environment around the train builder as used in the tests at European 

XFEL. On the left the data acquired and generated by the 2D x-ray image detectors front-end 

electronics/modules (FEM) provide the partial and pixel-unordered data streams to the inputs of the train 

builder. Within the train builder the data transfers and assembly into full image series (trains) is depicted. On 

the right side the processed data id forwarded by standard Ethernet switches to further computing systems 

and storage (Data Acquisition System – DAQ). 

The train builder system provides up to 16 channels of 10 Gbits/s Ethernet (10GbE) data 

inputs from a detector and up to 16 channels of 10GbE outputs to following computing 

layers. The system combines multiple Field Programmable Gate Arrays (FPGAs) and high-

speed cross-point switches in order to cope with the high data rates and allows flexible 

distribution and concentration of data. In order to allow buffering of the data as well as re-

organization of the data different Memory blocks are attached to all FPGAs. Due to the large 

number of interfaces as well as FPGAs, the system consists of multiple ATCA modules, which 

are connected via multi-channel high-speed interconnects. 

The typical usage and data path of the train builder is as following: a 2D detector is 

producing partial images on 16 channel of 10GbE with an unordered pixel arrangement due 

to technical reasons (efficient design of the underlying detector and ASICs). These channels 

are received by the 16 input of the train builder. On arrival the pixels will be ordered. After 

that all the partial images will be forwarded in a round robin fashion to destination FPGAs 

and the resulting series of images buffered in memory. At that point further processing of 

the images is possible before the series of images is forward (each series on one 10GbE 

output) to the next computing layer for storage to disc or further processing (e.g. GPU, HPC, 

FPGA, etc.). 



 
 

     42 
  
 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 654220 

An important aspect to allow correct data transmission and decoding is the definition of a 

generic set of protocols. Since the communication interface is 10 GB Ethernet, the UDP was 

chosen as standard communication protocol. Since UDP is a datagram based protocol and 

does not provide tracking of order of packets and detection of data losses and additional 

simple layer of protocol was developed to add this functionality (called PPT). On top of this a 

generic data format protocol was defined, which provides fields for all kind of information 

describing the properties of the image data, the images (pixel data), information about the 

data source as well as further information of the train builder system. 

As mentioned above, the key functionalities related to data processing and transfer are: 

• Immediate reception of data stream from detector and local buffering 

• Re-ordering of pixels within the partial images 

• Concentration of the partial images in one place (FPGA/buffer) 

• Optional: Providing further possibilities for processing of the images and injecting 

gathered information 

• Transmission of data to next computing layer (incl. distribution to multiple systems) 

The complete functionality of the train builder, as described above, had been implemented 

and the different aspects of the functionality and performance were successfully tested in 

real environments (e.g. 2D detector and computing layer behind the train builder at 

European XFEL laboratories). 

 

3.5 CRACEN - Resilient Communication for High Throughput 

Applications in Heterogeneous Networks (HZDR) 

Large scale data acquisition strongly benefits from efficient distribution of the data streams 

to variable network topologies. The abstraction library Cracen was developed for this 

purpose. It allows for the flexible distribution of data streams and the communication in 

arbitrary networks. The CRACEN solution aims at providing a resilient and scalable solution 

for data transfer and injection that allows for optimizing communication based on 

topologies, supports load balancing and a variety of communication software stacks. 

Currently, UDP, TCP and MPI are implemented as back ends for communication, which can 

be used and mixed in one application with a single communication interface. 

CRACEN allows for inherent serialization and deserialization of data. Communication within 

applications is described via graph-based topologies that can be mapped to existing 

interconnect topologies to optimize throughput. As such, the communication logic inherent 

to a certain software solution can be optimized for a chosen underlying hardware 

interconnect solution and is scalable between hardware solutions. The fundamental working  
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Figure 35: The CRACEN design includes a communication layer on top of a socket interface and a graph layer 

for describing communication topologies and their mappings to network topologies.  

principle of CRACEN is thus as follows: the dataflow is considered as directed graph, the 

nodes of the graph correspond to transition functions and the edges to communication. 

Resilience can thus be easily achieved by directing the incoming data another route using 

available edges and nodes, providing for redundancy as long as the remaining physical 

hardware allows to support the maximum throughput. 

A variety of communication libraries are applied to enable the flexible use of different 

network topologies. The user has to define a mapping from the logical to the physical nodes. 

As backends for the communication boost::asio, asio::datagam_socket and boost::mpi were 

implemented. For the processing of the nodes, input and output ring buffers are used to 

compensate for peak loads. One or multiple worker threads consume the data and apply the 

transition function. The framework consumes the output and sends it, using a send policy 

(e.g. round robin, broadcast or least workload first). 

The basis for both load balancing and resilience lies within parallel buffering streaming data 

between data analysis steps, allowing to describe any application by a graph-interconnected 

succession of tasks. Oversubscription and buffering allows for scalability, load balancing and 

resilience at the same time. 

Scalability in terms of throughput was measured to be linear on the Hypnos cluster at HZDR. 

These benchmark tests proved the linear increase of bandwidth from source to sink node 

with the number of cores. This of course depends on the underlying hardware configuration 

and selected communication topology, but the data shows that the CRACEN software stack 

does not prevent linear strong scaling. 
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Figure 36: Applications using CRACEN can describe data transfer and analysis by a graph-interconnected 

sequence of tasks with inherent buffering, allowing for resilience and scalability without a need to include 

explicit communication calls in the application. 

 

 
Figure 37: Strong scaling of throughput shows that it scales linearly with the number of communication 

partners 

Resilience and load balancing are achieved by asynchronous communication and penalty-

based scheduling of communication operations depending on local buffer size and response 

time for each communication partner within the topology. With close to empty buffer state 

and quick response time communication partners receive more data than partners with 

close to full buffer states and long response times. This means that malfunctioning partners 

will not be provided with data. Resilience was tested with respect to throughput and 

demonstrated by removing inner nodes from the graphs which had no significant influence 

on the throughput in case the total number of cores remained sufficiently high. 
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Figure 38: Resilience test for CRACEN:  By intentionally decreasing the number of working communication 

partners throughput gradually decreases, as more partners experience failures. 

CRACEN is implemented in C++11 and is available as Open Source [10]. It will be used in a 

first test be to scale the single-node based solution for the PSI Jungfrau calibration algorithm 

(see Deliverable D5.1). 

 

4. Synergy Aspects  

The work done at ELI-ALPS in collaboration with HZDR is a comprehensive write up of 

measurements of data throughput and latency for CUDA-based NVIDIA GPUs and their 

respective host systems as well as of the Infiniband interconnect. Such configurations are a 

prototypical and very general solution to high data rate imaging solutions. As such the 

results given here are of extreme importance also for high data rate applications at light 

sources. 

RASHPA is a versatile PCIe based solution that can be adapted by other RIs. As it is already 

prototyped using a smartpix detector used also at other RIs, portability between RIs is 

ensured. It is scalable and its hardware stack is based on the widely available PCIe interface. 

The PSI application of Jungfrau detector calibration developed together with HZDR is a good 

example of the interplay between data transfer and analysis that lies at the heart of UFDAC, 

viewing ultrafast data acquisition as an integrated task of transfer and analysis of data. The 

solution developed here is currently being evaluated by ELI-ALPS for possible reuse. 

The HZDR CRACEN solution aims at a scalable, resilient data transfer solution that is flexible 

in both communication topology and communication stack. It is GPL Open Source and can be 

adapted to work for different hardware solutions, with emphasis on DAQ chains connecting 
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a high data rate experiment to a compute centre for online analysis. It is foreseen to use 

CRACEN for scaling the PSI detector calibration presented here to 32 Jungfrau modules using 

CRACEN and to test it at ELI-ALPS. 

The various applications presented here also shows the different aspects of data transfer 

and injection with GPU and FPGA based solutions, giving a comprehensive overview of the 

various setups envisioned for such solutions at the various RIs. 

5. Summary and Outlook 

We present four prototype setups for determining efficient data transfer and injection, one 

using FPGAs (ESRF), two on GPUs (ELI-ALPS, HZDR) and one that uses a frontend FPGA with 

subsequent GPU-based analysis (PSI). 

The data throughput typically seen are close to what can be expected from the underlying 

hardware solution and are in the range of few GBps with freely available hardware. 

Latency can become an issue and has to be mitigated by more complex approaches that also 

increase scalability. 

First studies of scalability suggest that scaling in terms of throughput produces new 

challenges and subsequent analysis is needed to better optimize scalability. Scaling in terms 

of portability is possible, but depends on the final throughput achievable with the software 

stack used and the underlying hardware. 

Finally, resilience can be achieved for some communication software stacks, but especially 

those like MPI over Infiniband optimized for throughput and latency pose inherent problems 

for resilient solutions. 

With INTEL Omnipath and IBM/NVIDIA Nvlink under development it is mandatory to stay 

open for future solutions, which is a great challenge for long-term development at current 

RIs. 
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